Flow-induced deformation of shallow microfluidic channels
We study the elastic deformation of poly(dimethylsiloxane) (PDMS) microchannels under imposed flow rates and the effect of this deformation on the laminar flow profile and pressure distribution within the channels. Deformation is demonstrated to be an important consideration in low aspect ratio (hei...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2006-01, Vol.6 (4), p.500-507 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the elastic deformation of poly(dimethylsiloxane) (PDMS) microchannels under imposed flow rates and the effect of this deformation on the laminar flow profile and pressure distribution within the channels. Deformation is demonstrated to be an important consideration in low aspect ratio (height to width) channels and the effect becomes increasingly pronounced for very shallow channels. Bulging channels are imaged under varying flow conditions by confocal microscopy. The deformation is related to the pressure and is thus non-uniform throughout the channel, with tapering occurring along the stream-wise axis. The measured pressure drop is monitored as a function of the imposed flow rate. For a given pressure drop, the corresponding flow rate in a deforming channel is found to be several times higher than expected in a non-deforming channel. The experimental results are supported by scaling analysis and computational fluid dynamics simulations coupled to materials deformation models. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b513524a |