Articular contact at the tibiotalar joint in passive flexion

The knowledge of the contact areas at the tibiotalar articulating surfaces during passive flexion is fundamental for the understanding of ankle joint mobility. Traditional contact area reports are limited by the invasive measuring techniques used and by the complicated loading conditions applied. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2005-06, Vol.38 (6), p.1205-1212
Hauptverfasser: Corazza, Federico, Stagni, Rita, Parenti Castelli, Vincenzo, Leardini, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The knowledge of the contact areas at the tibiotalar articulating surfaces during passive flexion is fundamental for the understanding of ankle joint mobility. Traditional contact area reports are limited by the invasive measuring techniques used and by the complicated loading conditions applied. In the present study, passive flexion tests were performed on three anatomical preparations from lower leg amputation. Roentgen Stereophotogrammetric Analysis was used to accurately reconstruct the position of the tibia and the talus at a number of unconstrained flexion positions. A large number of points was collected on the surface of the tibial mortise and on the trochlea tali by a 3-D digitiser. Articular surfaces were modelled by thin plate splines approximating these points. Relative positions of these surfaces in all the flexion positions were obtained from corresponding bone position data. A distance threshold was chosen to define contact areas. A consistent pattern of contact was found on the articulating surfaces. The area moved anteriorly on both articular surfaces with dorsiflexion. The average position of the contact area centroid along the tibial mortise at maximum plantarflexion and at maximum dorsiflexion was respectively 58% posterior and 40% anterior of the entire antero-posterior length. For increasing dorsiflexion, the contact area moved from medial to lateral in all the specimens.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2004.06.019