A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering

The k-means algorithm is widely used for clustering because of its computational efficiency. Given n points in d-dimensional space and the number of desired clusters k, k-means seeks a set of k-cluster centers so as to minimize the sum of the squared Euclidean distance between each point and its nea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-04, Vol.28 (4), p.533-543
Hauptverfasser: Laszlo, M., Mukherjee, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The k-means algorithm is widely used for clustering because of its computational efficiency. Given n points in d-dimensional space and the number of desired clusters k, k-means seeks a set of k-cluster centers so as to minimize the sum of the squared Euclidean distance between each point and its nearest cluster center. However, the algorithm is very sensitive to the initial selection of centers and is likely to converge to partitions that are significantly inferior to the global optimum. We present a genetic algorithm (GA) for evolving centers in the k-means algorithm that simultaneously identifies good partitions for a range of values around a specified k. The set of centers is represented using a hyper-quadtree constructed on the data. This representation is exploited in our GA to generate an initial population of good centers and to support a novel crossover operation that selectively passes good subsets of neighboring centers from parents to offspring by swapping subtrees. Experimental results indicate that our GA finds the global optimum for data sets with known optima and finds good solutions for large simulated data sets.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2006.66