Morphological and oxidative alterations on Sertoli cells cytoskeleton due to retinol-induced reactive oxygen species

Retinol (vitamin A) is involved in several cellular processes, like cell division, differentiation, transformation and apoptosis. Although it has been shown that retinol is a limitant factor for all these processes, the precise mechanisms by which retinol acts are still unknown. In the present study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2005-03, Vol.271 (1-2), p.189-196
Hauptverfasser: de Oliveira, Ramatis Birnfeld, Klamt, Fábio, Castro, Mauro A A, Polydoro, Manuela, Zanotto Filho, Alfeu, Gelain, Daniel Pens, Dal-Pizzol, Felipe, Moreira, José Cláudio Fonseca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retinol (vitamin A) is involved in several cellular processes, like cell division, differentiation, transformation and apoptosis. Although it has been shown that retinol is a limitant factor for all these processes, the precise mechanisms by which retinol acts are still unknown. In the present study we hypothesised that alterations in the cytoskeleton of Sertoli cells induced by retinol supplementation could indicate an adaptive maintenance of its functions, since it plays an important role in the transformation process that we observed. Previous results demonstrated that Sertoli cells treated with retinol showed an oxidative imbalance, that leads the cell to two phenotypes: apoptosis or transformation. Our group has identified characteristics of Sertoli cells transformed by retinol which results in normal cell functions modification. In the present study the actin filament fluorescence assay and the deformation coefficient showed a modification in the morphology induced by retinol. We also observed an oxidative alteration in isolated cytoskeleton proteins and did not show alterations when these proteins are analyzed by electrophoreses. Our results showed an increase in mitochondria superoxide production and a decrease in nitric oxide levels. All results were partially or completely reverted by co-treatment of the antioxidant Trolox. These findings suggest that the cytoskeleton components suffer individual alterations in different levels and that these alterations generate a global phenotype modification and that these processes are probably ROS dependent. We believe that the results from this study indicate an adaptation of the cytoskeleton to oxidative imbalance since there was not a loss of its function.
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-005-6339-z