Maximum-Likelihood Methods for Phylogeny Estimation

Maximum-likelihood (ML) estimation of phylogenies has reached a rather high level of sophistication because of algorithmic advances, improvements in models of sequence evolution, and improvements in statistical approaches and application of cluster computing. Here, I provide a brief basic background...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 2005, Vol.395, p.757-779
1. Verfasser: Sullivan, Jack
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximum-likelihood (ML) estimation of phylogenies has reached a rather high level of sophistication because of algorithmic advances, improvements in models of sequence evolution, and improvements in statistical approaches and application of cluster computing. Here, I provide a brief basic background in application of the general principle of ML estimation to phylogenetics and provide an example of selecting among a nested set of ML models using a dynamic approach to hierarchical likelihood-ratio tests. I focus attention on PAUP∗ because it provides unique ease of switching among alternative optimality criteria (e.g., minimum evolution, parsimony, and ML). Further, examples of parametric bootstrap tests are provided that demonstrate statistical tests of phylogenetic hypotheses and model adequacy, in an absolute rather than relative sense. The increasing availability of clustered, parallelized computation makes use of such parametric approaches feasible.
ISSN:0076-6879
1557-7988
DOI:10.1016/S0076-6879(05)95039-8