Allometric scaling of mammalian metabolism
The importance of size as a determinant of metabolic rate (MR) was first suggested by Sarrus and Rameaux over 160 years ago. Max Rubner's finding of a proportionality between MR and body surface area in dogs (in 1883) was consistent with Sarrus and Rameaux's formulation and suggested a pro...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2005-05, Vol.208 (Pt 9), p.1611-1619 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The importance of size as a determinant of metabolic rate (MR) was first suggested by Sarrus and Rameaux over 160 years ago. Max Rubner's finding of a proportionality between MR and body surface area in dogs (in 1883) was consistent with Sarrus and Rameaux's formulation and suggested a proportionality between MR and body mass (Mb) raised to the power of 2/3. However, interspecific analyses compiled during the first half of the 20th century concluded that mammalian basal MR (BMR, ml O2 h(-1)) was proportional to Mb3/4, a viewpoint that persisted for seven decades, even leading to its common application to non-mammalian groups. Beginning in 1997, the field was re-invigorated by three new theoretical explanations for 3/4-power BMR scaling. However, the debate over which theory accurately explains 3/4-power scaling may be premature, because some authors maintain that there is insufficient evidence to adopt an exponent of 3/4 over 2/3. If progress toward understanding the non-isometric scaling of BMR is ever to be made, it is first essential to know what the relationship actually is. We re-examine previous investigations of BMR scaling by standardising units and recalculating regression statistics. The proportion of large herbivores in a data set is positively correlated both with the scaling exponent (b, where BMR=aMb b) and the coefficient of variation (CV: the standard deviation of ln-ln residuals) of the relationship. Inclusion of large herbivores therefore both inflates b and increases variation around the calculated trendline. This is related to the long fast duration required to achieve the postabsorptive conditions required for determination of BMR, and because peak post-feeding resting MR (RMRpp) scales with an exponent of 0.75+/-0.03 (95% CI). Large herbivores are therefore less likely to be postabsorptive when MR is measured, and are likely to have a relatively high MR if not postabsorptive. The 3/4 power scaling of RMRpp is part of a wider trend where, with the notable exception of cold-induced maximum MR (b=0.65+/-0.05), b is positively correlated with the elevation of the relationship (higher MR values scale more steeply). Thus exercise-induced maximum MR (b=0.87+/-0.05) scales more steeply than RMRpp, field MR (b=0.73+/-0.04), thermoneutral resting MR (RMRt, b=0.712+/-0.013) and BMR. The implication of this observation is that contamination of BMR data with non-basal measurements is likely to increase the BMR scaling exponent even if the contamin |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.01501 |