Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome
RNA interference (RNAi) is the process by which double-stranded RNA (dsRNA) directs sequence-specific degradation of messenger RNA in animal and plant cells. In mammalian cells, RNAi can be triggered by 21–23 nucleotide duplexes of small interfering RNA (siRNA). Strategies to inhibit RNA virus multi...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 2005-05, Vol.336 (1), p.51-59 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA interference (RNAi) is the process by which double-stranded RNA (dsRNA) directs sequence-specific degradation of messenger RNA in animal and plant cells. In mammalian cells, RNAi can be triggered by 21–23 nucleotide duplexes of small interfering RNA (siRNA). Strategies to inhibit RNA virus multiplication based on the use of siRNAs have to consider the high genetic polymorphism exhibited by this group of virus. Here we described a significant cross-inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in BHK-21 cells by siRNAs targeted to various conserved regions (5′NCR, VP4, VPg, POL, and 3′NCR) of the viral genome. The results showed that siRNAs generated in vitro by human recombinant dicer enzyme gave an inhibition of 10- to 1000-fold in virus yield of both homologous (HKN/2002) and heterologous (CHA/99) isolates of FMDV serotype O at 48 h post-infection (hpi). The inhibition extended to at least 6 days post-infection. For serotype Asia1, the virus yield in YNBS/58-infected cells examined at 12, 24, and 48 hpi decreased by ∼10-fold in cells pretreated with HKN/2002-specific siRNAs, but there was no significant decrease at 60 hpi. The inhibition was specific to FMDV replication, as no reduction was observed in virus yield of pseudorabies virus, an unrelated virus. Moreover, we also demonstrated an enhanced viral suppression could be achieved in BHK-21 cells with siRNA transfection after an infection had been established. These results suggested that siRNAs directed to several conserved regions of the FMDV genome could inhibit FMDV replication in a cross-resistance manner, providing a strategy candidate to treat high genetic variability of FMDV. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1016/j.virol.2005.01.051 |