Purification, properties, and crystallization of Saccharomyces cerevisiae dihydropterin pyrophosphokinase-dihydropteroate synthase

The tri-functional enzyme of Saccharomyces cerevisiae dihydroneopterin aldolase (DHNA)-dihydropterin pyrophosphokinase (PPPK)-dihydropteroate synthase (DHPS) catalyzes three sequential steps in folate biosynthesis. A cDNA encoding the PPPK and DHPS domains of the tri-functional enzyme has been clone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein expression and purification 2005-06, Vol.41 (2), p.355-362
Hauptverfasser: Berglez, Janette, Pilling, Patricia, Macreadie, Ian, Fernley, Ross T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tri-functional enzyme of Saccharomyces cerevisiae dihydroneopterin aldolase (DHNA)-dihydropterin pyrophosphokinase (PPPK)-dihydropteroate synthase (DHPS) catalyzes three sequential steps in folate biosynthesis. A cDNA encoding the PPPK and DHPS domains of the tri-functional enzyme has been cloned. This bi-functional enzyme was expressed as a His(6) fusion protein in Escherichia coli and the protein was purified to apparent homogeneity. The purified protein possesses both PPPK and DHPS activities as measured by the incorporation of [(3)H]p-ABA into the appropriate substrate. The pH optimum of the DHPS activity was determined to be 8.5. Gel filtration measurement indicates that the protein exists as a dimer in solution. A robotic screening method was used to identify crystallization conditions. Bi-pyramidal crystals of the enzyme formed with the protein in the presence of a pterin substrate analog in phosphate buffer (pH 6.3) and these diffracted to 2.3A. Structural information from these crystals could be used to design novel drugs to inhibit folate biosynthesis.
ISSN:1046-5928
DOI:10.1016/j.pep.2005.02.003