Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates

Ninety-five avian pathogenic Escherichia coli (APEC) isolates recovered from diagnosed cases of avian colibacillosis from North Georgia between 1996 and 2000 were serotyped and examined for typical virulence-factors, susceptibility to antimicrobials of human and veterinary significance, and genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary microbiology 2005-05, Vol.107 (3), p.215-224
Hauptverfasser: Zhao, Shaohua, Maurer, John J., Hubert, Susannah, De Villena, Juan F., McDermott, Patrick F., Meng, Jianghong, Ayers, Sherry, English, Linda, White, David G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ninety-five avian pathogenic Escherichia coli (APEC) isolates recovered from diagnosed cases of avian colibacillosis from North Georgia between 1996 and 2000 were serotyped and examined for typical virulence-factors, susceptibility to antimicrobials of human and veterinary significance, and genetic relatedness. Twenty different serotypes were identified, with O78 being the most common (12%). The majority of the avian E. coli isolates (60%), however, were non-typeable with standard O antisera. Eighty-four percent of isolates were PCR positive for the temperature-sensitive hemagglutinin ( tsh) gene and 86% positive for the increased serum survival ( iss) gene. Multiple antimicrobial-resistant phenotypes (≥3 antimicrobials) were observed in 92% of E. coli isolates, with the majority of isolates displaying resistance to sulfamethoxazole (93%), tetracycline (87%), streptomycin (86%), gentamicin (69%), and nalidixic acid (59%). Fifty-six E. coli isolates displaying resistance to nalidixic acid were co-resistant to difloxacin (57%), enrofloxacin (16%), gatifloxacin (2%), and levofloxacin (2%). DNA sequencing revealed point mutations in gyrA (Ser83-Leu, Asp87-Tyr, Asp87-Gly, Asp87-Ala), gyrB (Glu466-Asp, Asp426-Thr), and parC (Ser80-Ile, Ser80-Arg). No mutations were observed in parE. Twelve of the quinolone-resistant E. coli isolates were tolerant to cyclohexane, a marker for upregulation of the acrAB multi-drug resistance efflux pump. Quinolone-resistant isolates were further genetically characterized via ribotyping. Twenty-two distinct ribogroups were identified, with 61% of isolates clustering into four major ribogroups, indicating that quinolone resistance has emerged among multiple avian pathogenic E. coli serogroups and chromosomal backgrounds.
ISSN:0378-1135
1873-2542
DOI:10.1016/j.vetmic.2005.01.021