Design of an IV Formulation of an Unstable Prodrug Candidate for Prostate Cancer Treatment: Solution Chemistry of N-(glutaryl-hyp-ala-ser-cyclohexylglycyl-gln-ser-leu)-doxorubicin
ABSTRACT The chemical degradation of N-(glutaryl-hyp-ala-ser-cyclohexylglycyl-gln-ser-leu)-doxorubicin (henceforth referred to as doxorubicin peptide conjugate 1) was studied in buffered aqueous solution. The pH-rate profile of degradation shows that the doxorubicin conjugate is most stable between...
Gespeichert in:
Veröffentlicht in: | Drug development and industrial pharmacy 2006-01, Vol.32 (3), p.327-334 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The chemical degradation of N-(glutaryl-hyp-ala-ser-cyclohexylglycyl-gln-ser-leu)-doxorubicin (henceforth referred to as doxorubicin peptide conjugate 1) was studied in buffered aqueous solution. The pH-rate profile of degradation shows that the doxorubicin conjugate is most stable between pH 5 and 6. The dependence of log kobsd on pH in acidic medium is characteristic of specific acid-catalysis of the sugar hemiaminal of 1 (as in the case of doxorubicin). Isolation of degradates and structural determination shows that the degradation at lower pH values yields the water-insoluble aglycone doxorubicinone, supporting the mechanism of acid-catalyzed loss of the amino sugar. At pH higher than 5, a more complicated degradation pattern is observed, including the loss of the amino sugar and the aromatization of the saturated ring to give 7,8-dehydro-9,10-desacetyldoxorubicinone as one of the major products. Around the pH of maximum stability in solution, the rate of degradation of 1 is significantly greater than that for doxorubicin, which rules out the formulation of a room temperature solution product with a sufficiently long shelflife for market use. Design of a stable lyophilized formulation for sterile reconstitution based on the physicochemical properties of 1 is described. |
---|---|
ISSN: | 0363-9045 1520-5762 |
DOI: | 10.1080/03639040500518997 |