Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities

Sulfated polymannuronate (SPMG), a novel anti-AIDS drug candidate, combats HIV-1 infection mainly by binding to gp120 protein with high affinity. To explore the structural basis of this anti-HIV-1 action, size-defined oligosaccharides were prepared by semi-synthesis or separated from native SPMG. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glycobiology (Oxford) 2005-05, Vol.15 (5), p.501-510
Hauptverfasser: Liu, Haiying, Geng, Meiyu, Xin, Xianliang, Li, Fuchuan, Zhang, Zhenqing, Li, Jing, Ding, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfated polymannuronate (SPMG), a novel anti-AIDS drug candidate, combats HIV-1 infection mainly by binding to gp120 protein with high affinity. To explore the structural basis of this anti-HIV-1 action, size-defined oligosaccharides were prepared by semi-synthesis or separated from native SPMG. In this study, a series of homogeneously sized SPMG fragments are evaluated for their capacity to bind rgp120 using surface plasmon resonance (SPR) analysis. The minimum SPMG fragment size that interacts with rgp120 is a hexasaccharide. Additionally, binding capacity increases with the molecular size of oligosaccharides, with the affinity of large fragments (≥ 15–16 saccharides) approaching that of full-sized SPMG. Competitive inhibition and stoichiometric analyses disclose that SPMG oligos bind to multiple binding sites on gp120. Sugar chains longer than 15–16 saccharide residues (SPMG) display multivalent interactions, with one sugar chain binding to two or three gp120 molecules. Consistent with binding data, a positive correlation exists between the size of SPMG oligosaccharides and their anti-HIV activity. The octasaccharide is established to be the minimal active fragment inhibiting syncytium formation and lowering the P24 core antigen level in HIV-IIIB-infected CEM cells. Alternatively, about 50% anti-HIV activity was observed for 15–16 saccharides, whereas a 19–20-saccharide fragment displayed anti-HIV activity equivalent to native SPMG. The structures of the unique minimum hexasaccharide specifically recognized by gp120 and the minimum octasaccharide combating HIV-IIIB infection were representatively structured as [ManA (2s)β1-4 ManA(2s/3s)]n.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwi031