Single-step purification by lectin affinity and deglycosylation analysis of recombinant human and porcine deoxyribonucleases I expressed in COS-7 cells
Human and porcine recombinant deoxyribonucleases I (DNases I) were expressed in COS-7 cells, and purified by a single-step procedure. Since affinities for concanavalin A (Con A) and wheatgerm agglutinin (WGA) were strong in these recombinant DNases I, purification using Con A-WGA mixture-agarose col...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2006-02, Vol.28 (4), p.215-221 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human and porcine recombinant deoxyribonucleases I (DNases I) were expressed in COS-7 cells, and purified by a single-step procedure. Since affinities for concanavalin A (Con A) and wheatgerm agglutinin (WGA) were strong in these recombinant DNases I, purification using Con A-WGA mixture-agarose column was performed. By this method, the enzymes in culture medium could quickly be isolated to apparent homogeneity in approx. 10 min. From 1 ml of culture medium, about 20-30 microg of purified DNase I with a specific activity ranging from 22000 to 41000 units/mg were obtained. The purified DNases I were subjected to enzymatic deglycosylation by either peptide N-glycosidase F (PNGase F) or endoglycosidase H (Endo H). The recombinant enzyme was cleaved by PNGase F, but not by Endo H, indicating that the recombinant enzymes are modified by N-linked complex-type carbohydrate moieties. In the human recombinant DNase I, activity was decreased by PNGase F-treatment, while that of the porcine DNase I remained unaffected. The thermal stability of the human enzyme was extremely susceptible to heat following PNGase F-treatment, as was the porcine enzyme to a lesser extent. This study suggests that N-linked complex-type carbohydrate moieties may contribute to the enzymatic activity and/or thermal stability of recombinant DNases I. |
---|---|
ISSN: | 0141-5492 1573-6776 |
DOI: | 10.1007/s10529-005-5522-3 |