Elongated Oligomers Assemble into Mammalian PrP Amyloid Fibrils

In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly α-helical state into β-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a β form of recombinant mouse PrP (residues 91–231). The β-PrP precursors assembled s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-03, Vol.357 (3), p.975-985
Hauptverfasser: Tattum, M. Howard, Cohen-Krausz, Sara, Khalili-Shirazi, Azadeh, Jackson, Graham S., Orlova, Elena V., Collinge, John, Clarke, Anthony R., Saibil, Helen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly α-helical state into β-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a β form of recombinant mouse PrP (residues 91–231). The β-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of ∼60 Å. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-β amyloid fold.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2006.01.052