Self-similarity of single-channel transmission for electron transport in nanowires
We demonstrate that the single-channel transmission in the resonance tunneling regime exhibits self-similarity as a function of the nanowire length and the energy of incident electrons. The self-similarity is used to design the nonlinear transformation of the nanowire length and energy which, on the...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2006-03, Vol.124 (10), p.104703-104703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that the single-channel transmission in the resonance tunneling regime exhibits self-similarity as a function of the nanowire length and the energy of incident electrons. The self-similarity is used to design the nonlinear transformation of the nanowire length and energy which, on the basis of known values of transmission for a certain region on the energy-length plane, yields transmissions for other regions on this plane. Test calculations with a one-dimensional tight-binding model illustrate the described transformations. Density function theory based transport calculations of Na atomic wires confirm the existence of the self-similarity in the transmission. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2174959 |