Chiral N-Salicylidene Vanadyl Carboxylate-Catalyzed Enantioselective Aerobic Oxidation of α-Hydroxy Esters and Amides

A series of chiral vanadyl carboxylates derived from N-salicylidene-L-α-amino acids and vanadyl sulfate has been developed. These configurationally well defined complexes were examined for the kinetic resolution of double- and mono-activated 2° alcohols. The best chiral templates involve the combina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (10), p.3522-3527
Hauptverfasser: Weng, Shiue-Shien, Shen, Mei-Wen, Kao, Jun-Qi, Munot, Yogesh S., Chen, Chien-Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of chiral vanadyl carboxylates derived from N-salicylidene-L-α-amino acids and vanadyl sulfate has been developed. These configurationally well defined complexes were examined for the kinetic resolution of double- and mono-activated 2° alcohols. The best chiral templates involve the combination of L-tert-leucine and 3,5-di-t-butyl-, 3,5-diphenyl-, or 3,4-dibromo-salicylaldehyde. The resulting vanadyl(V)-methoxide complexes after recrystallization from air-saturated methanol serve as highly enantioselective catalysts for asymmetric aerobic oxidation of α-hydroxyl-esters and amides with a diverse array of α-, O-, and N-substituents at ambient temperature in toluene. The asymmetric inductions of the oxidation process are in the range of 10 to > 100 in terms of selectivity factors ($K_{rel}$) in most instances. The previously undescribed aerobic oxidation protocol is also applicable to the kinetic resolution of C-13 taxol side chain with high selectivity factor ($K_{rel}$= 35). X-ray crystallographic analysis of an adduct between a given vanadyl complex and N-benzyl-mandelamide allows for probing the stereochemical origin of the nearly exclusive asymmetric control in the oxidation process.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0511021103