Experimental and Theoretical UV Characterizations of Acetylacetone and Its Isomers

Cryogenic matrix isolation experiments have allowed the measurement of the UV absorption spectra of the high-energy non-chelated isomers of acetylacetone, these isomers being produced by UV irradiation of the stable chelated form. Their identification has been done by coupling selective UV-induced i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-03, Vol.110 (11), p.3920-3926
Hauptverfasser: Coussan, S, Ferro, Y, Trivella, A, Rajzmann, M, Roubin, P, Wieczorek, R, Manca, C, Piecuch, P, Kowalski, K, Włoch, M, Kucharski, S. A, Musiał, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryogenic matrix isolation experiments have allowed the measurement of the UV absorption spectra of the high-energy non-chelated isomers of acetylacetone, these isomers being produced by UV irradiation of the stable chelated form. Their identification has been done by coupling selective UV-induced isomerization, infrared spectroscopy, and harmonic vibrational frequency calculations using density functional theory. The relative energies of the chelated and non-chelated forms of acetylacetone in the S0 state have been obtained using density functional theory and coupled-cluster methods. For each isomer of acetylacetone, we have calculated the UV transition energies and dipole oscillator strengths using the excited-state coupled-cluster methods, including EOMCCSD (equation-of-motion coupled-cluster method with singles and doubles) and CR-EOMCCSD(T) (the completely renormalized EOMCC approach with singles, doubles, and non-iterative triples). For dipole-allowed transition energies, there is a very good agreement between experiment and theory. In particular, the CR-EOMCCSD(T) approach explains the blue shift in the electronic spectrum due to the formation of the non-chelated species after the UV irradiation of the chelated form of acetylacetone. Both experiment and CR-EOMCCSD(T) theory identify two among the seven non-chelated forms to be characterized by red-shifted UV transitions relative to the remaining five non-chelated isomers.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp056834r