Interactions of Pluronics with phospholipid monolayers at the air–water interface

Pluronics are triblock copolymers which are extensively applied excipients shown to interact with cell membranes. The aim of our study was to apply monolayer techniques and epifluorescence microscopy to investigate the interaction behavior between selected Pluronics and phospholipid monolayers which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2005-05, Vol.285 (2), p.640-652
Hauptverfasser: Chang, Lin-Chau, Lin, Chia-Yu, Kuo, Min-Wen, Gau, Churn-Shiouh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pluronics are triblock copolymers which are extensively applied excipients shown to interact with cell membranes. The aim of our study was to apply monolayer techniques and epifluorescence microscopy to investigate the interaction behavior between selected Pluronics and phospholipid monolayers which serve as a model of cell membranes. The results showed that Pluronic L61 with hydrophobic proportions much larger than those of F68 demonstrated condensed film-like surface behavior while F68 exhibited more expanded behavior. The increments of surface pressure and the changes of image were more obvious in adding Pluronic L61 than F68 to the subphase of dipalmitoylphosphatidylcholine (DPPC) monolayers, which indicated that the interaction may be related to van der Waals forces and hydrophobic interaction. Pluronics selected with higher hydrophobicities demonstrated larger surface activities and penetration abilities while being added to the subphase of DPPC and dimyristoylphosphatidylcholine (DMPC) monolayers. Pluronic P85 and F68 were found to be squeezed to subphase at higher surface pressures, which may be attributed to their relatively higher hydrophilicities.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2004.11.011