Structures of p53 Cancer Mutants and Mechanism of Rescue by Second-site Suppressor Mutations

We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-04, Vol.280 (16), p.16030-16037
Hauptverfasser: Joerger, Andreas C., Ang, Hwee Ching, Veprintsev, Dmitry B., Blair, Caroline M., Fersht, Alan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the “structural” oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg168 mimics the role of Arg249 in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M500179200