Flow and Thrombosis at Orifices Simulating Mechanical Heart Valve Leakage Regions
Background: While it is established that mechanical heart valves (MHVs) damage blood elements during leakage and forward flow, the role in thrombus formation of platelet activation by high shear flow geometries remains unclear. In this study, continuously recalcified blood was used to measure the ef...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2006-02, Vol.128 (1), p.30-39 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: While it is established that mechanical heart valves (MHVs) damage blood elements during leakage and forward flow, the role in thrombus formation of platelet activation by high shear flow geometries remains unclear. In this study, continuously recalcified blood was used to measure the effects of blood flow through orifices, which model MHVs, on the generation of procoagulant thrombin and the resulting formation of thrombus. The contribution of platelets to this process was also assessed. Method of Approach: 200, 400, 800, and 1200μm orifices simulated the hinge region of bileaflet MHVs, and 200, 400, and 800μm wide slits modeled the centerline where the two leaflets meet when the MHV is closed. To assess activation of coagulation during blood recirculation, samples were withdrawn over 0-47min and the plasmas assayed for thrombin-antithrombin-III (TAT) levels. Model geometries were also inspected visually. Results: The 200 and 400μm round orifices induced significant TAT generation and thrombosis over the study interval. In contrast, thrombin generation by the slit orifices, and by the 800 and 1200μm round orifices, was negligible. In additional experiments with nonrecalcified or platelet-depleted blood, TAT levels were markedly reduced versus the studies with fully anticoagulated whole blood (p |
---|---|
ISSN: | 0148-0731 1528-8951 |
DOI: | 10.1115/1.2133768 |