Efficient hyperkernel learning using second-order cone programming

The kernel function plays a central role in kernel methods. Most existing methods can only adapt the kernel parameters or the kernel matrix based on empirical data. Recently, Ong et al. introduced the method of hyperkernels which can be used to learn the kernel function directly in an inductive sett...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2006-01, Vol.17 (1), p.48-58
Hauptverfasser: TSANG, Ivor Wai-Hung, KWOK, James Tin-Yau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kernel function plays a central role in kernel methods. Most existing methods can only adapt the kernel parameters or the kernel matrix based on empirical data. Recently, Ong et al. introduced the method of hyperkernels which can be used to learn the kernel function directly in an inductive setting. However, the associated optimization problem is a semidefinite program (SDP), which is very computationally expensive, even with the recent advances in interior point methods. In this paper, we show that this learning problem can be equivalently reformulated as a second-order cone program (SOCP), which can then be solved more efficiently than SDPs. Comparison is also made with the kernel matrix learning method proposed by Lanckriet et al. Experimental results on both classification and regression problems, with toy and real-world data sets, show that our proposed SOCP formulation has significant speedup over the original SDP formulation. Moreover, it yields better generalization than Lanckriet et al.'s method, with a speed that is comparable, or sometimes even faster, than their quadratically constrained quadratic program (QCQP) formulation.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2005.860848