Digital Concentration Readout of Single Enzyme Molecules Using Femtoliter Arrays and Poisson Statistics
Methods for accurately quantifying the concentration of a particular analyte in solution are all based on ensemble responses in which many analyte molecules give rise to the measured signal. In this paper, single molecules of β-galactosidase were monitored using a 1 mm diameter fiber optic bundle wi...
Gespeichert in:
Veröffentlicht in: | Nano letters 2006-03, Vol.6 (3), p.520-523 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods for accurately quantifying the concentration of a particular analyte in solution are all based on ensemble responses in which many analyte molecules give rise to the measured signal. In this paper, single molecules of β-galactosidase were monitored using a 1 mm diameter fiber optic bundle with 2.4 × 105 individually sealed, femtoliter microwell reactors. By observation of the buildup of fluorescent products from single enzyme molecule catalysis over the array of reaction vessels and by application of a Poisson statistical analysis, a digital concentration readout was obtained. This approach should prove useful for single molecule enzymology and ultrasensitive bioassays. More generally, the ability to determine concentration by counting individual molecules offers a new approach to analysis of dilute solutions. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl060227d |