Exploiting Photoinduced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-Free Materials

Computer simulations reveal how photoinduced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which thereby undergoes both a reversible chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-03, Vol.22 (6), p.2620-2628
Hauptverfasser: Travasso, Rui D. M, Kuksenok, Olga, Balazs, Anna C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computer simulations reveal how photoinduced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated diblock copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a nonreactive homopolymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, nonintrusive process for manufacturing high quality polymeric devices in a low-cost, efficient manner.
ISSN:0743-7463
1520-5827
DOI:10.1021/la053350d