Rapid Purification and Size Separation of Gold Nanoparticles via Diafiltration
Purification and size-based separation of nanoparticles remain significant challenges in the preparation of well-defined materials for fundamental studies and applications. Diafiltration shows considerable potential for the efficient and convenient purification and size separation of water-soluble n...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-03, Vol.128 (10), p.3190-3197 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purification and size-based separation of nanoparticles remain significant challenges in the preparation of well-defined materials for fundamental studies and applications. Diafiltration shows considerable potential for the efficient and convenient purification and size separation of water-soluble nanoparticles, allowing for the removal of small-molecule impurities and for the isolation of small nanoparticles from larger nanostructures in a single process. Herein, we report studies aimed at assessing the suitability of diafiltration for (i) the purification of water-soluble thiol-stabilized 3-nm gold nanoparticles, (ii) the separation of a bimodal distribution of nanoparticles into the corresponding fractions, and (iii) the separation of a polydisperse sample into fractions of differing mean core diameter. NMR, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that diafiltration produces nanoparticles with a much higher degree of purity than is possible by dialysis or a combination of solvent washes, chromatography, and ultracentrifugation. UV−visible spectroscopic and transmission electron microscopic (TEM) analyses show that diafiltration offers the ability to separate nanoparticles of disparate core size. These results demonstrate the applicability of diafiltration for the rapid and green preparation of high-purity gold nanoparticle samples and the size separation of heterogeneous nanoparticle samples. They also suggest the development of novel diafiltration membranes specifically suited to high-resolution nanoparticle size separation. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0558241 |