B7-1 and B7-2: Similar costimulatory ligands with different biochemical, oligomeric and signaling properties
B7-1 and B7-2 are homologous costimulatory ligands expressed on the surface of antigen presenting cells (APCs). Binding of these molecules to the T cell costimulatory receptors, CD28 and CTLA-4, is essential for the activation and regulation of T cell immunity. Despite strong structural similarities...
Gespeichert in:
Veröffentlicht in: | Immunology Letters 2006-04, Vol.104 (1), p.70-75 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | B7-1 and B7-2 are homologous costimulatory ligands expressed on the surface of antigen presenting cells (APCs). Binding of these molecules to the T cell costimulatory receptors, CD28 and CTLA-4, is essential for the activation and regulation of T cell immunity. Despite strong structural similarities, B7-1 and B7-2 exhibit different biochemical features, and their binding to the costimulatory receptors results in distinct T cell functional outcomes. Using photobleaching based fluorescence resonance energy transfer (FRET), our previous studies have demonstrated that B7-1 and B7-2 have different cell surface oligomeric states. While B7-1 is present as a dimer, B7-2 exists as a monomer on the cell surface suggesting that the unique cell surface oligomeric states of the costimulatory ligands may play a key role in the regulation of T cell responses. Moreover, signaling via B7-1 and B7-2 in dendritic cells has been reported to be dependent on their simultaneous expression, raising the possibility that their direct interaction or their involvement in synergistic signaling pathways may play a role in the function of antigen presenting cells. We discuss physiological relevance of distinct oligomeric states of B7-1 and B7-2 and address whether these molecules can associate with one another on the cell surface to form hetero-oligomers. Our findings suggest that B7-1 and B7-2 do not form hetero-oligomers, underscoring the biological relevance of dimeric and monomeric state of B7-1 and B7-2, respectively. |
---|---|
ISSN: | 0165-2478 1879-0542 1365-2567 |
DOI: | 10.1016/j.imlet.2005.11.019 |