Role of Transcription Factors in Motoneuron Differentiation of Adult Human Olfactory Neuroepithelial‐Derived Progenitors
Neurosphereforming cell (NSFC) lines have been established from cultures of human adult olfactory neuroepithelium. Few of these cells ever express mature neuronal or glial markers in minimal essential medium supplemented with 10% fetal bovine serum or defined medium. However, these neural progenitor...
Gespeichert in:
Veröffentlicht in: | Stem cells (Dayton, Ohio) Ohio), 2006-02, Vol.24 (2), p.434-442 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurosphereforming cell (NSFC) lines have been established from cultures of human adult olfactory neuroepithelium. Few of these cells ever express mature neuronal or glial markers in minimal essential medium supplemented with 10% fetal bovine serum or defined medium. However, these neural progenitors have the potential to differentiate along glial or neuronal lineages. To evaluate the potential of NSFCs to form motoneurons, transcription factors Olig2, Ngn2, and HB9 were introduced into NSFCs to determine if their expression is sufficient for motoneuron specification and differentiation, as has been shown in the early development of the avian and murine central nervous systems in vivo. NSFCs transfected with Olig2, Ngn2, and HB9 alone exhibited no phenotypic lineage restriction. In contrast, simultaneous transfection of Ngn2 and HB9 cDNA increased the expression of Isl1/2, a motoneuron marker, when the cells were maintained in medium supplemented with retinoic acid, forskolin, and sonic hedgehog. Furthermore, a population of Olig2‐expressing NSFCs also expressed Ngn2. Cotransfection of NSFCs with Olig2 and HB9, but not Olig2 and Ngn2, increased Isl1/2 expression. Coculture of NSFCs trans‐fected with Ngn2‐HB92 or Olig2 and HB9 with purified chicken skeletal muscle demonstrated frequent contacts that resembled neuromuscular junctions. These studies demonstrate that transcription factors governing the early development of chick and mouse motoneuron formation are able to drive human adult olfactory neuroepithelial progenitors to differentiate into motoneurons in vitro. Our long‐term goal is to develop cell populations for future studies of the therapeutic utility of these olfactory‐derived NSFCs for autologous cell replacement strategies for central nervous system trauma and neurodegenerative diseases. |
---|---|
ISSN: | 1066-5099 1549-4918 |
DOI: | 10.1634/stemcells.2005-0171 |