Molecular and morphological evolution of the amphipod radiation of Lake Baikal

Lake Baikal, in Siberia, Russia, contains the highest biodiversity of any extant lake, including an impressive radiation of gammaroidean amphipods that are often cited as a classic case of adaptive radiation. However, relationships among Baikal’s amphipods remain poorly understood. The phylogenetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular phylogenetics and evolution 2005-05, Vol.35 (2), p.323-343
Hauptverfasser: Macdonald III, Kenneth S., Yampolsky, Lev, Duffy, J. Emmett
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lake Baikal, in Siberia, Russia, contains the highest biodiversity of any extant lake, including an impressive radiation of gammaroidean amphipods that are often cited as a classic case of adaptive radiation. However, relationships among Baikal’s amphipods remain poorly understood. The phylogenetic history of 32 Lake Baikal amphipod species, representing most major lineages of the endemic fauna, was examined using three genes (COI, 16S rRNA, and 18S rRNA), and 152 morphological characters. Results support monophyly of the largest and most diverse of the Baikalian families, the Acanthogammaridae. Analyses suggest that a second Baikalian family, the fossorial Micruropodidae, is paraphyletic and composed of two divergent clades, one of which includes Macrohectopus branickii, a morphologically specialized pelagic planktivore traditionally assigned its own family. The extreme morphological and ecological divergence of Macrohectopus from its close genetic relatives, and conversely, the large genetic distances among other morphologically similar micruropodids, suggest that morphological and molecular evolution have often been uncoupled during the radiation of Baikal’s amphipods. This study suggests that the amphipod fauna of Lake Baikal is polyphyletic; originating from two independent invasions of the lake.
ISSN:1055-7903
1095-9513
DOI:10.1016/j.ympev.2005.01.013