Cellulase production from Aspergillus niger MS82: effect of temperature and pH

Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New biotechnology 2009-09, Vol.25 (6), p.437-441
Hauptverfasser: Sohail, Muhammad, Siddiqi, Roquya, Ahmad, Aqeel, Khan, Shakeel Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but very low levels of β-glucosidase. This deficiency necessitates screening of fungi for cellulytic potential. A number of indigenously isolated fungi were screened for cellulytic potential. In the present study, the kinetics of cellulase production from an indigenous strain of Aspergillus niger MS82 is reported. Product formation parameters of endoglucanase and β-glucosidase ( Q p + Y p/s) indicate that A. niger MS82 is capable of producing moderate to high levels of both endoglucanase and β-glucosidase when grown on different carbon containing natural substrates, for example, grass, corncob, bagasse along side purified celluloses. Furthermore, it was observed that the production of endoglucanase reaches its maximum during exponential phase of growth, while β-glucosidase during the Stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be promising. Highest production of cellulase was noted at pH 4.0 at 35 °C under submerged conditions. Growth and enzyme production was affected by variations in temperature and pH.
ISSN:1871-6784
1876-4347
DOI:10.1016/j.nbt.2009.02.002