Determinants of Volatile General Anesthetic Potency: A Preliminary Three-Dimensional Pharmacophore for Halogenated Anesthetics

We investigated the molecular basis for the immobilizing activity of halogenated volatile anesthetics using comparative molecular field analysis. In vivo potency data (expressed as minimum alveolar concentrations) for 69 structurally diverse anesthetics were obtained from the literature. The drugs w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2006-03, Vol.102 (3), p.764-771
Hauptverfasser: Sewell, Jason C., Sear, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the molecular basis for the immobilizing activity of halogenated volatile anesthetics using comparative molecular field analysis. In vivo potency data (expressed as minimum alveolar concentrations) for 69 structurally diverse anesthetics were obtained from the literature. The drugs were randomly divided into a training set (n = 52) used to derive the activity model and a test set (n = 17) used to independently assess the model's predictive power. The anesthetic structures were aligned so as to maximize their similarity in molecular shape and electrostatic potential to the most potent drug in the group, CF2H-(CF2)3-CH2OH. The conformers and alignments of the anesthetics with maximum similarity (calculated as Carbo indices) were retained and used to derive the comparative molecular field analysis models. The final model explained 94.2% of the variance in the observed activities of the training set compounds. The model showed good predictive capability for both the training set (cross-validated r2 = 0.705) and randomly excluded test set anesthetics (r2 = 0.837). Three-dimensional pharmacophoric maps were derived to identify the spatial distribution of key areas where steric and electrostatic interactions are important in determining immobilizing activity of the halogenated drugs and were compared with our previously published maps obtained for nonhalogenated volatile anesthetics.
ISSN:0003-2999
1526-7598
DOI:10.1213/01.ane.0000195421.46107.d0