Early paranodal myelin swellings (tomacula) in an avian riboflavin deficiency model of demyelinating neuropathy

Disruption of the complex architectural and molecular organization of the paranodal region of myelinated peripheral nerve fiber may initiate the evolving time dependent process of segmental demyelination. In support of this notion was the finding of focal paranodal myelin swellings (tomacula) due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental neurology 2006-03, Vol.198 (1), p.65-71
Hauptverfasser: Cai, Z., Finnie, J.W., Blumbergs, P.C., Manavis, J., Ghabriel, M.N., Thompson, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disruption of the complex architectural and molecular organization of the paranodal region of myelinated peripheral nerve fiber may initiate the evolving time dependent process of segmental demyelination. In support of this notion was the finding of focal paranodal myelin swellings (tomacula) due to redundant folding of myelin sheaths, early in the time course of an avian riboflavin deficiency model of demyelinating neuropathy. Newborn broiler meat chickens were maintained either on a routine diet containing 5.0 mg/kg riboflavin (control group) or a riboflavin-deficient diet containing 1.8 mg/kg riboflavin. Riboflavin concentrations in the liver were measured at postnatal day 11. Peripheral nerves were morphologically examined at days 6, 11, 16 and 21 using light and electron microscopy and teased nerve fiber techniques. Riboflavin-deficient chickens showed signs of a neuropathy from days 8 and pathological examination of peripheral nerves revealed a demyelinating neuropathy with paranodal tomacula formation starting on day 11. Paranodal tomacula consisted of redundant myelin infoldings or outfoldings, increased in size and frequency after day 11. After day 16, the paranodal swellings showed prominent degenerative changes accompanied by an increased frequency of myelinated fibers showing demyelination. Tomacula due to redundant myelin folds are generally considered a remyelination phenomenon, yet in this avian riboflavin deficiency model of demyelination, the paranodal tomacula occurred early in the course of demyelination.
ISSN:0014-4886
1090-2430
DOI:10.1016/j.expneurol.2005.10.028