Homogenization and scattering from heterogeneous media based on finite-difference-time-domain Monte Carlo computations
We present a method to study the scattering by heterogeneous media based on the two-dimensional (2D), finite-difference-time-domain method and a Monte Carlo algorithm. The inhomogeneities may reach wave-length size and their optical constants are in the visible and infrared domain. The algorithm is...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2006-02, Vol.23 (2), p.370-381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method to study the scattering by heterogeneous media based on the two-dimensional (2D), finite-difference-time-domain method and a Monte Carlo algorithm. The inhomogeneities may reach wave-length size and their optical constants are in the visible and infrared domain. The algorithm is used to determine an effective propagation constant in a monodisperse medium from the observation of the energy decay in the medium. The result is compared over a large domain of volume fraction with the Keller and the Foldy-Twersky 2D models to determine the domain of their validity. Then the same approach is applied to homogenize the smallest particles in a bidisperse case and determine when such process is adequate. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.23.000370 |