Diffraction of electromagnetic waves by periodic arrays of rectangular cylinders
Reflection, transmission, and absorption of electromagnetic waves by periodic arrays of conducting or dielectric rectangular cylinders are studied by a finite-difference time-domain technique. Truncated gratings made of lossless and lossy conducting and dielectric elements are considered. Results fo...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2006-02, Vol.23 (2), p.306-313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reflection, transmission, and absorption of electromagnetic waves by periodic arrays of conducting or dielectric rectangular cylinders are studied by a finite-difference time-domain technique. Truncated gratings made of lossless and lossy conducting and dielectric elements are considered. Results for surface current density, transmission, and reflection coefficients are calculated and compared with corresponding results in the literature, which are obtained by approximate or rigorous methods applicable only to idealized infinite models. An excellent agreement is observed in all cases, which demonstrates the accuracy and efficacy of our proposed analysis technique. Additionally, this numerical method easily analyzes practical gratings that contain a finite number of elements made of lossless, lossy, or even inhomogeneous materials. The results rapidly approach those for the idealized infinite arrays as the number of elements is increased. The method can also solve nested gratings, stacked gratings, and holographic gratings with little analytical or computational effort. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.23.000306 |