Effects of tramadol and O-demethyl-tramadol on human 5-HT reuptake carriers and human 5-HT3A receptors : A possible mechanism for tramadol-induced early emesis

([3H]5-HT)-uptake and patch-clamp techniques were used to study the actions of (+) and (-) tramadol and the active metabolites of tramadol, (+) and (-) O-demethyl-tramadol on the human serotonin (5-HT) transporter and the human 5-HT3A receptor, stably expressed in HEK-293 cells. The (+) and (-) enan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2006-02, Vol.531 (1-3), p.54-58
Hauptverfasser: BARANN, Martin, URBAN, Bernd, STAMER, Ulrike, DORNER, Zita, BÖNISCH, Heinz, BRÜSS, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:([3H]5-HT)-uptake and patch-clamp techniques were used to study the actions of (+) and (-) tramadol and the active metabolites of tramadol, (+) and (-) O-demethyl-tramadol on the human serotonin (5-HT) transporter and the human 5-HT3A receptor, stably expressed in HEK-293 cells. The (+) and (-) enantiomers of tramadol suppressed the human 5-HT transporter concentration-dependently (IC50=1.0 and 0.8 microM, respectively), resulting in 97% and 87% transport inhibition at their respective initial plasma concentrations (9.5 microM). The (+) and (-) enantiomers of the active tramadol metabolite were less potent than tramadol in inhibiting the human 5-HT transporter (IC50=15 and 44 microM, respectively), resulting in 19.2% and 4.8% transport inhibition at their highest plasma concentrations (2.5 microM). In contrast to their potent suppression of the 5-HT transporter, both, (+) and (-) tramadol inhibited 5-HT (30 microM)-induced currents only at substantially higher concentrations (IC50=199 and 251 microM, respectively), resulting in only 6% and 4% inhibition at the initial maximum plasma concentration. A similar low potent inhibition of human 5-HT(3A) receptors was found for (+) and (-) O-demethyl-tramadol (IC50=158 and 63 microM, respectively). In conclusion, at clinical plasma concentrations tramadol potently suppresses the human 5-HT transporter, whereas it has only a slight effect on the human 5-HT3A receptor. The results are compatible with a possible mechanism for tramadol-induced early emesis involving the serotonergic system.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2005.11.054