Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide

Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)2, La(NO3)3, etc. The possible growth mechanism of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-02, Vol.110 (5), p.2006-2012
Hauptverfasser: Xia, Tian, Li, Qin, Liu, Xiangdong, Meng, Jian, Cao, Xueqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)2, La(NO3)3, etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of H+ and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV−vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67−79 m2 g-1. XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV−vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder. Interestingly, molybdenum trioxide nanobelts exhibit a red shift under this condition.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp055945n