A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database
A computer algorithm for nodule detection in chest radiographs is presented. The algorithm consists of four main steps: (i) image preprocessing; (ii) nodule candidate detection; (iii) feature extraction; (iv) candidate classification. Two optional extensions to this scheme are tested: candidate sele...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2006-04, Vol.10 (2), p.247-258 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computer algorithm for nodule detection in chest radiographs is presented. The algorithm consists of four main steps: (i) image preprocessing; (ii) nodule candidate detection; (iii) feature extraction; (iv) candidate classification. Two optional extensions to this scheme are tested: candidate selection and candidate segmentation. The output of step (ii) is a list of circles, which can be transformed into more detailed contours by the extra candidate segmentation step. In addition, the candidate selection step (which is a classification step using a small number of features) can be used to reduce the list of nodule candidates before step (iii).
The algorithm uses multi-scale techniques in several stages of the scheme: Candidates are found by looking for local intensity maxima in Gaussian scale space; nodule boundaries are detected by tracing edge points found at large scales down to pixel scale; some of the features used for classification are taken from a multi-scale Gaussian filterbank. Experiments with this scheme (with and without the segmentation and selection steps) are carried out on a previously characterized, publicly available database, that contains a large number of very subtle nodules. For this database, counting as detections only those nodules that were indicated with a confidence level of 50% or more, radiologists previously detected 70% of the nodules.
For our algorithm, it turns out that the selection step does have an added value for the system, while segmentation does not lead to a clear improvement. With the scheme with the best performance, accepting on average two false positives per image results in the identification of 51% of all nodules. For four false positives, this increases to 67%. This is close to the previously reported 70% detection rate of the radiologists. |
---|---|
ISSN: | 1361-8415 1361-8423 |
DOI: | 10.1016/j.media.2005.09.003 |