Region-specific expression of nitric oxide synthases in the bovine oviduct during the oestrous cycle and in vitro

Nitric oxide synthases (NOS) account for the endogenous production of nitric oxide (NO), a small and permeable bioreactive molecule. NO is known to act as a paracrine mediator during various processes associated with female reproduction. In the present study, the mRNA expression of the endothelial (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2006-02, Vol.188 (2), p.205-213
Hauptverfasser: Ulbrich, S E, Rehfeld, S, Bauersachs, S, Wolf, E, Rottmayer, R, Hiendleder, S, Vermehren, M, Sinowatz, F, Meyer, H H D, Einspanier, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide synthases (NOS) account for the endogenous production of nitric oxide (NO), a small and permeable bioreactive molecule. NO is known to act as a paracrine mediator during various processes associated with female reproduction. In the present study, the mRNA expression of the endothelial (eNOS) and inducible (iNOS) NO synthases were examined in bovine oviduct epithelial cells (BOEC) during the oestrous cycle. In addition, eNOS and iNOS mRNA and protein were localised by in situ hybridisation and immunocytochemistry respectively. Furthermore, the effects of exogenously applied oestradiol-17β and progesterone on NOS mRNA regulation were studied in a suspension culture of BOEC. The eNOS mRNA abundance was low around ovulation (day 0) and increased significantly until pro-oestrus (day 18) in the ampulla. Immunoreactive protein of eNOS was detected predominantly in endothelial cells as well as in secretory oviduct epithelial cells at pro-oestrus. The iNOS mRNA concentration was significantly reduced in the isthmus at pro-oestrus (day 18) and oestrus (day 0) compared with persistently high levels in the ampulla. By in situ hybridisation, specific iNOS transcripts were additionally demonstrated in the oviduct epithelium. Immunoreactive iNOS protein was localised in secretory epithelial cells as well as in the lamina muscularis. The in vitro stimulation showed that both NOS were stimulated by progesterone, but not by oestradiol-17β. The region-specific modulated expression of eNOS and iNOS provides evidence for an involvement of endogenously produced NO in the regulation of oviductal functions.
ISSN:0022-0795
1479-6805
DOI:10.1677/joe.1.06526