Stonin 2 Is an AP-2-Dependent Endocytic Sorting Adaptor for Synaptotagmin Internalization and Recycling

Clathrin-mediated endocytosis is involved in the internalization, recycling, and degradation of cycling membrane receptors as well as in the biogenesis of synaptic vesicle proteins. While many constitutively internalized cargo proteins are recognized directly by the clathrin adaptor complex AP-2, st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2006-02, Vol.10 (2), p.233-244
Hauptverfasser: Diril, M. Kasim, Wienisch, Martin, Jung, Nadja, Klingauf, Jürgen, Haucke, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clathrin-mediated endocytosis is involved in the internalization, recycling, and degradation of cycling membrane receptors as well as in the biogenesis of synaptic vesicle proteins. While many constitutively internalized cargo proteins are recognized directly by the clathrin adaptor complex AP-2, stimulation-dependent endocytosis of membrane proteins is often facilitated by specialized sorting adaptors. Although clathrin-mediated endocytosis appears to be a major pathway for presynaptic vesicle cycling, no sorting adaptor dedicated to synaptic vesicle membrane protein endocytosis has been indentified in mammals. Here, we show that stonin 2, a mammalian ortholog of Drosophila stoned B, facilitates clathrin/AP-2-dependent internalization of synaptotagmin and targets it to a recycling vesicle pool in living neurons. The ability of stonin 2 to facilitate endocytosis of synaptotagmin is dependent on its association with AP-2, an intact μ-homology domain, and functional AP-2 heterotetramers. Our data identify stonin 2 as an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling.
ISSN:1534-5807
1878-1551
DOI:10.1016/j.devcel.2005.12.011