Modulation of the TLR-Mediated Inflammatory Response by the Endogenous Human Host Defense Peptide LL-37

The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (< or =1 microg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-alpha in LPS-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Immunology 2006-02, Vol.176 (4), p.2455-2464
Hauptverfasser: Mookherjee, Neeloffer, Brown, Kelly L, Bowdish, Dawn M. E, Doria, Silvana, Falsafi, Reza, Hokamp, Karsten, Roche, Fiona M, Mu, Ruixia, Doho, Gregory H, Pistolic, Jelena, Powers, Jon-Paul, Bryan, Jenny, Brinkman, Fiona S. L, Hancock, Robert E. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (< or =1 microg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-alpha in LPS-stimulated human monocytic cells. Microarray studies established a temporal transcriptional profile and identified differentially expressed genes in LPS-stimulated monocytes in the presence or absence of LL-37. LL-37 significantly inhibited the expression of specific proinflammatory genes up-regulated by NF-kappaB in the presence of LPS, including NFkappaB1 (p105/p50) and TNF-alpha-induced protein 2 (TNFAIP2). In contrast, LL-37 did not significantly inhibit LPS-induced genes that antagonize inflammation, such as TNF-alpha-induced protein 3 (TNFAIP3) and the NF-kappaB inhibitor, NFkappaBIA, or certain chemokine genes that are classically considered proinflammatory. Nuclear translocation, in LPS-treated cells, of the NF-kappaB subunits p50 and p65 was reduced > or =50% in the presence of LL-37, demonstrating that the peptide altered gene expression in part by acting directly on the TLR-to-NF-kappaB pathway. LL-37 almost completely prevented the release of TNF-alpha and other cytokines by human PBMC following stimulation with LPS and other TLR2/4 and TLR9 agonists, but not with cytokines TNF-alpha or IL-1beta. Biochemical and inhibitor studies were consistent with a model whereby LL-37 modulated the inflammatory response to LPS/endotoxin and other agonists of TLR by a complex mechanism involving multiple points of intervention. We propose that the natural human host defense peptide LL-37 plays roles in the delicate balancing of inflammatory responses in homeostasis as well as in combating sepsis induced by certain TLR agonists.
ISSN:0022-1767
1550-6606
1365-2567
DOI:10.4049/jimmunol.176.4.2455