The Human Parietal Operculum. II. Stereotaxic Maps and Correlation with Functional Imaging Results

In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2006-02, Vol.16 (2), p.268-279
Hauptverfasser: Eickhoff, Simon B., Amunts, Katrin, Mohlberg, Hartmut, Zilles, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of functional imaging results. The human parietal operculum consists of four distinct cytoarchitectonic areas (OP 1–4) as shown in the preceding publication. The 10 cytoarchitectonically examined brains were 3-D-reconstructed and spatially normalized to the T1-weighted single-subject template of the Montreal Neurological Institute (MNI). A probabilistic map was calculated for each area in this standard stereotaxic space. A cytoarchitectonic summary map of the four cortical areas on the human parietal operculum which combines these probabilistic maps was subsequently computed for the comparison with a meta-analysis of functional locations of SII. The meta-analysis used the results from 57 fMRI and PET studies and allowed the comparison of the functionally defined SII region to the cytoarchitectonic map of the parietal operculum. The functional localization of SII showed a good match to the cytoarchitectonically defined region. Therefore the cytoarchitectonic maps of OP 1–4 of the human parietal operculum can be interpreted as an anatomical correlate of the (functionally defined) human SII region. Our results also suggest that the SII foci reported in functional imaging studies may actually reflect activations in either of its architectonic subregions.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhi106