Developmentally regulated gene expression of the small heat shock protein Hsp27 in zebrafish embryos

Mammalian small heat shock proteins including Hsp27 and alpha-B crystallin are constitutively expressed in various adult and embryonic tissues including skeletal and cardiac muscle. However, the function of these proteins during embryonic development is not understood, and information on their expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene Expression Patterns 2006, Vol.6 (2), p.127-133
Hauptverfasser: Mao, L., Shelden, E.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mammalian small heat shock proteins including Hsp27 and alpha-B crystallin are constitutively expressed in various adult and embryonic tissues including skeletal and cardiac muscle. However, the function of these proteins during embryonic development is not understood, and information on their expression during the earliest stages of development is limited. We have recently demonstrated constitutive and stress inducible expression of a homologue of human Hsp27 in adult zebrafish, an important experimental model of vertebrate developmental processes. Here, we assessed the temporospatial dynamics of zebrafish Hsp27 ( hsp27) and alpha-B crystallin ( cryab) gene expression using reverse-transcriptase PCR (RT–PCR) and hsp27 expression by in situ hybridization. Our results reveal that initial upregulation of hsp27 expression occurs during early gastrulation. Expression of hsp27 is detected transiently in developing myotomes, lens and brain, and more persistently in developing heart. The constitutive expression level of hsp27 in embryos at some stages of development is considerably greater than that observed in unstressed adult tissues. Expression of hsp27 was also observed in all tissues examined in embryos recovering from heat stress. The pattern of expression observed for hsp27 overlaps partially, but not completely, with that reported for other heat shock proteins.
ISSN:1567-133X
1872-7298
DOI:10.1016/j.modgep.2005.07.002