A lichenase-like family 12 endo-(1→4)-β-glucanase from Aspergillus japonicus: study of the substrate specificity and mode of action on β-glucans in comparison with other glycoside hydrolases

Using anion-exchange chromatography on Source 15Q followed by hydrophobic interaction chromatography on Source 15 Isopropyl, a lichenase-like endo-(1→4)-β-glucanase (BG, 28 kDa, pI 4.1) was isolated from a culture filtrate of Aspergillus japonicus. The enzyme was highly active against barley β-gluca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate research 2006-02, Vol.341 (2), p.218-229
Hauptverfasser: Grishutin, Sergei G., Gusakov, Alexander V., Dzedzyulya, Ekaterina I., Sinitsyn, Arkady P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using anion-exchange chromatography on Source 15Q followed by hydrophobic interaction chromatography on Source 15 Isopropyl, a lichenase-like endo-(1→4)-β-glucanase (BG, 28 kDa, pI 4.1) was isolated from a culture filtrate of Aspergillus japonicus. The enzyme was highly active against barley β-glucan and lichenan (263 and 267 U/mg protein) and had much lower activity toward carboxymethylcellulose (3.9 U/mg). The mode of action of the BG on barley β-glucan and lichenan was studied in comparison with that of Bacillus subtilis lichenase and endo-(1→4)-β-glucanases (EG I, II, and III) of Trichoderma reesei. The BG behaved very similar to the bacterial lichenase, except the tri- and tetrasaccharides formed as the end products of β-glucan hydrolysis with the BG contained the β-(1→3)-glucoside linkage at the non-reducing end, while the lichenase-derived oligosaccharides had the β-(1→3)-linkage at the reducing end. The BG was characterized by a high amino acid sequence identity to the EG of Aspergillus kawachii (UniProt entry Q12679) from a family 12 of glycoside hydrolases (96% in 162 identified aa residues out of total 223 residues) and also showed lower sequence similarity to the EglA of Aspergillus niger (O74705).
ISSN:0008-6215
1873-426X
DOI:10.1016/j.carres.2005.11.011