Three-dimensional texture analysis of cancellous bone cores evaluated at clinical CT resolutions

The objective of this study was to determine if three-dimensional (3D) Haralick co-occurrence texture measures calculated from low-resolution CT images of trabecular bone correlate with 3D structural indices measured from high-resolution CT images. Thirty-three cubical regions of trabecular bone fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2006-02, Vol.17 (2), p.259-266
Hauptverfasser: SHOWALTER, Chad, CLYMER, Bradley D, RICHMOND, Bradford, POWELL, Kimerly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to determine if three-dimensional (3D) Haralick co-occurrence texture measures calculated from low-resolution CT images of trabecular bone correlate with 3D structural indices measured from high-resolution CT images. Thirty-three cubical regions of trabecular bone from human calcanei were analyzed using images obtained from a micro-computed tomography (micro-CT) scanner. 3D measures of bone architecture were calculated. The original images were then subsampled by factors of 5, 10, 15, and 20, and 3D texture features were calculated for each set of subsampled images. Linear regression models showed that co-occurrence texture features were significantly correlated with structural indices. Over 90% of the variation in three different structural indices was explained in two-variable regression models using texture features as predictors when the voxel side length was reduced by a factor of 10. Texture features calculated from clinical images may increase our ability to obtain trabecular bone architectural information when high-resolution images are unobtainable.
ISSN:0937-941X
1433-2965
DOI:10.1007/s00198-005-1994-1