Heat Resistance and Mechanism of Heat Inactivation in Thermophilic Campylobacters

The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60°C by two methods. Isothermal measurements yielded D₅₅ values in the range from 4.6 to 6.6 min and z values in the ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2006, Vol.72 (1), p.908-913
Hauptverfasser: Nguyen, Hong T. T, Corry, Janet E. L, Miles, Christopher A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60°C by two methods. Isothermal measurements yielded D₅₅ values in the range from 4.6 to 6.6 min and z values in the range from 5.5 to 6.3°C. Dynamic measurements using differential scanning calorimetry (DSC) during heating at a rate of 10°C/min yielded D₅₅ values of 2.5 min and 3.4 min and z values of 6.3°C and 6.5°C for AR6 and DR4, respectively. Both dynamic and isothermal methods yielded mean D₅₅ values that were substantially greater than those reported previously (0.75 to 0.95 min). DSC analysis of each strain during heating at a rate of 10°C/min yielded a complex series of overlapping endothermic peaks, which were assigned to cell wall lipids, ribosomes, and DNA. Measurement of the decline in the numbers of CFU in calorimetric samples as they were heated showed that the maximum rate of cell death occurred at 56 to 57°C, which is close to the value predicted mathematically from the isothermal measurements of D and z (61°C). Both estimates were very close to the peak m₁ values, 60 to 62°C, which were tentatively identified with unfolding of the 30S ribosome subunit, showing that cell death in C. jejuni and C. coli coincided with unfolding of the most thermally labile regions of the ribosome. Other measurements indicated that several essential proteins, including the [alpha] and {szligbeta} subunits of RNA polymerase, might also unfold at the same time and contribute to cell death.
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.72.1.908-913.2006