Design, Synthesis, and Structure−Activity Relationships of 1-,3-,8-, and 9-Substituted-9-deazaxanthines at the Human A2B Adenosine Receptor
Over two hundred 1-, 3-, 8-, and 9-substituted-9-deazaxanthines were prepared and evaluated for their binding affinity at the recombinant human adenosine receptors, in particular at the hA2B and hA2A subtypes. Several ligands endowed with sub-micromolar to low nanomolar binding affinity at hA2B rece...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2006-01, Vol.49 (1), p.282-299 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over two hundred 1-, 3-, 8-, and 9-substituted-9-deazaxanthines were prepared and evaluated for their binding affinity at the recombinant human adenosine receptors, in particular at the hA2B and hA2A subtypes. Several ligands endowed with sub-micromolar to low nanomolar binding affinity at hA2B receptors, good selectivity over hA2A and hA3, but a relatively poor selectivity over hA1 were obtained. Good antagonistic potencies and efficacies, with pA2 values close to the corresponding pK is, were observed in functional assays in vitro performed on a selected series of compounds. 1,3-Dimethyl-8-phenoxy-(N-p-halogenophenyl)-acetamido-9-deazaxanthine derivatives appeared as the most interesting leads, some of them showing outstanding hA2B affinities, high selectivity over hA2A and hA3, but low selectivity over hA1. Structure−affinity relationships suggested that the binding potency at the hA2B receptor was mainly modulated by the steric (lipophilic) properties of the substituents at positions 1 and 3 and by the electronic and lipophilic characteristics of the substituents at position 8. A comparison among affinity and selectivity profiles of 9-deazaxanthines with the corresponding xanthines suggested some possible differences in their binding mode. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm0506221 |