Drosophila melanogaster locomotion in cold thin air

The alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2006-01, Vol.209 (Pt 2), p.364-371
Hauptverfasser: Dillon, Michael E, Frazier, Melanie R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alpine environment is likely to challenge insect locomotion because of low mean temperatures and reduced barometric pressure. In this study, we measured the direct and interactive effects of these factors on walking and flight performance of wild-caught Drosophila melanogaster Meigen. We found that decreased temperature and decreased air pressure both reduced walking speed and flight performance. Flies walked more slowly at 18 degrees C and in the lowest air pressure treatment (34 kPa). This treatment, equivalent in air pressure to the top of Mount Everest, was the only air pressure that significantly reduced fly walking speed. Therefore, walking performance in the wild is likely limited by temperature, but not oxygen availability. In contrast to walking performance, low but ecologically realistic air pressures dramatically reduced overall flight performance. The effects of reduced air pressure on flight performance were more pronounced at colder temperatures. Reduced flight performance in high altitude conditions was primarily driven by an increased reluctance for flies to initiate flight rather than outright failure to fly. Such reluctance to fly in high altitude conditions may in part explain the prevalence of aptery and brachyptery in high altitude insects. The observed interactive effects of temperature and air pressure on flight performance confirm the importance of simultaneously manipulating both of these factors when studying the impact of altitudinal conditions on insect physiology and behavior.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.01999