Stiffness-weighted magnetic resonance imaging
An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to chang...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2006-01, Vol.55 (1), p.59-67 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Magnetic resonance in medicine |
container_volume | 55 |
creator | Glaser, Kevin J. Felmlee, Joel P. Manduca, Armando Kannan Mariappan, Yogesh Ehman, Richard L. |
description | An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67598890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67598890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</originalsourceid><addsrcrecordid>eNqFkE9PAjEUxBujEUQPfgHDycRD4bW7pdujIYpGUKOox6bbfYur-we3S5BvbxXUk_H0knm_mWSGkEMGPQbA-0Vd9DjIMNoibSY4p1yocJu0vQQ0YCpskT3nXgBAKRnukhYbBCFnImoTet9kaVqic3SJ2ey5waRbmFmJTWa7NbqqNKXFbua1rJztk53U5A4PNrdDHs7PpsMLOr4ZXQ5Px9QGikc0NcwiCBlLkyAYaVgcxQp4bP0njWwaitgCiDABSCGxRpmEiwQtC3AQChV0yPE6d15Xbwt0jS4yZzHPTYnVwumBFCqKFPwLcoiEEox78GQN2rpyrsZUz2tfql5pBvpzRO1H1F8jevZoE7qIC0x-yc1qHuivgWWW4-rvJD25m3xH0rUjcw2-_zhM_eq7BFLop-uRvpUwvZK3j1oEH1Ueis8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20859512</pqid></control><display><type>article</type><title>Stiffness-weighted magnetic resonance imaging</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</creator><creatorcontrib>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</creatorcontrib><description>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20748</identifier><identifier>PMID: 16342158</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Breast Neoplasms - pathology ; Elasticity ; Image Processing, Computer-Assisted ; intravoxel phase dispersion ; magnetic resonance elastography ; Magnetic Resonance Imaging - methods ; Phantoms, Imaging ; stiffness-weighted imaging</subject><ispartof>Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.59-67</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</citedby><cites>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16342158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glaser, Kevin J.</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Kannan Mariappan, Yogesh</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><title>Stiffness-weighted magnetic resonance imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Breast Neoplasms - pathology</subject><subject>Elasticity</subject><subject>Image Processing, Computer-Assisted</subject><subject>intravoxel phase dispersion</subject><subject>magnetic resonance elastography</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>stiffness-weighted imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PAjEUxBujEUQPfgHDycRD4bW7pdujIYpGUKOox6bbfYur-we3S5BvbxXUk_H0knm_mWSGkEMGPQbA-0Vd9DjIMNoibSY4p1yocJu0vQQ0YCpskT3nXgBAKRnukhYbBCFnImoTet9kaVqic3SJ2ey5waRbmFmJTWa7NbqqNKXFbua1rJztk53U5A4PNrdDHs7PpsMLOr4ZXQ5Px9QGikc0NcwiCBlLkyAYaVgcxQp4bP0njWwaitgCiDABSCGxRpmEiwQtC3AQChV0yPE6d15Xbwt0jS4yZzHPTYnVwumBFCqKFPwLcoiEEox78GQN2rpyrsZUz2tfql5pBvpzRO1H1F8jevZoE7qIC0x-yc1qHuivgWWW4-rvJD25m3xH0rUjcw2-_zhM_eq7BFLop-uRvpUwvZK3j1oEH1Ueis8</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Glaser, Kevin J.</creator><creator>Felmlee, Joel P.</creator><creator>Manduca, Armando</creator><creator>Kannan Mariappan, Yogesh</creator><creator>Ehman, Richard L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>Stiffness-weighted magnetic resonance imaging</title><author>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Breast Neoplasms - pathology</topic><topic>Elasticity</topic><topic>Image Processing, Computer-Assisted</topic><topic>intravoxel phase dispersion</topic><topic>magnetic resonance elastography</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>stiffness-weighted imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaser, Kevin J.</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Kannan Mariappan, Yogesh</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaser, Kevin J.</au><au>Felmlee, Joel P.</au><au>Manduca, Armando</au><au>Kannan Mariappan, Yogesh</au><au>Ehman, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness-weighted magnetic resonance imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16342158</pmid><doi>10.1002/mrm.20748</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.59-67 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_67598890 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Breast Neoplasms - pathology Elasticity Image Processing, Computer-Assisted intravoxel phase dispersion magnetic resonance elastography Magnetic Resonance Imaging - methods Phantoms, Imaging stiffness-weighted imaging |
title | Stiffness-weighted magnetic resonance imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness-weighted%20magnetic%20resonance%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Glaser,%20Kevin%20J.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20748&rft_dat=%3Cproquest_cross%3E67598890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20859512&rft_id=info:pmid/16342158&rfr_iscdi=true |