Stiffness-weighted magnetic resonance imaging

An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2006-01, Vol.55 (1), p.59-67
Hauptverfasser: Glaser, Kevin J., Felmlee, Joel P., Manduca, Armando, Kannan Mariappan, Yogesh, Ehman, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 59
container_title Magnetic resonance in medicine
container_volume 55
creator Glaser, Kevin J.
Felmlee, Joel P.
Manduca, Armando
Kannan Mariappan, Yogesh
Ehman, Richard L.
description An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.20748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67598890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67598890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</originalsourceid><addsrcrecordid>eNqFkE9PAjEUxBujEUQPfgHDycRD4bW7pdujIYpGUKOox6bbfYur-we3S5BvbxXUk_H0knm_mWSGkEMGPQbA-0Vd9DjIMNoibSY4p1yocJu0vQQ0YCpskT3nXgBAKRnukhYbBCFnImoTet9kaVqic3SJ2ey5waRbmFmJTWa7NbqqNKXFbua1rJztk53U5A4PNrdDHs7PpsMLOr4ZXQ5Px9QGikc0NcwiCBlLkyAYaVgcxQp4bP0njWwaitgCiDABSCGxRpmEiwQtC3AQChV0yPE6d15Xbwt0jS4yZzHPTYnVwumBFCqKFPwLcoiEEox78GQN2rpyrsZUz2tfql5pBvpzRO1H1F8jevZoE7qIC0x-yc1qHuivgWWW4-rvJD25m3xH0rUjcw2-_zhM_eq7BFLop-uRvpUwvZK3j1oEH1Ueis8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20859512</pqid></control><display><type>article</type><title>Stiffness-weighted magnetic resonance imaging</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</creator><creatorcontrib>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</creatorcontrib><description>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20748</identifier><identifier>PMID: 16342158</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Breast Neoplasms - pathology ; Elasticity ; Image Processing, Computer-Assisted ; intravoxel phase dispersion ; magnetic resonance elastography ; Magnetic Resonance Imaging - methods ; Phantoms, Imaging ; stiffness-weighted imaging</subject><ispartof>Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.59-67</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</citedby><cites>FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16342158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glaser, Kevin J.</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Kannan Mariappan, Yogesh</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><title>Stiffness-weighted magnetic resonance imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Breast Neoplasms - pathology</subject><subject>Elasticity</subject><subject>Image Processing, Computer-Assisted</subject><subject>intravoxel phase dispersion</subject><subject>magnetic resonance elastography</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>stiffness-weighted imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PAjEUxBujEUQPfgHDycRD4bW7pdujIYpGUKOox6bbfYur-we3S5BvbxXUk_H0knm_mWSGkEMGPQbA-0Vd9DjIMNoibSY4p1yocJu0vQQ0YCpskT3nXgBAKRnukhYbBCFnImoTet9kaVqic3SJ2ey5waRbmFmJTWa7NbqqNKXFbua1rJztk53U5A4PNrdDHs7PpsMLOr4ZXQ5Px9QGikc0NcwiCBlLkyAYaVgcxQp4bP0njWwaitgCiDABSCGxRpmEiwQtC3AQChV0yPE6d15Xbwt0jS4yZzHPTYnVwumBFCqKFPwLcoiEEox78GQN2rpyrsZUz2tfql5pBvpzRO1H1F8jevZoE7qIC0x-yc1qHuivgWWW4-rvJD25m3xH0rUjcw2-_zhM_eq7BFLop-uRvpUwvZK3j1oEH1Ueis8</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Glaser, Kevin J.</creator><creator>Felmlee, Joel P.</creator><creator>Manduca, Armando</creator><creator>Kannan Mariappan, Yogesh</creator><creator>Ehman, Richard L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>Stiffness-weighted magnetic resonance imaging</title><author>Glaser, Kevin J. ; Felmlee, Joel P. ; Manduca, Armando ; Kannan Mariappan, Yogesh ; Ehman, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3928-fa1ce057b7ade0a7a1b8b902bcfa1f8cf45bc0054d00f0dca9ad25dec13e64593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Breast Neoplasms - pathology</topic><topic>Elasticity</topic><topic>Image Processing, Computer-Assisted</topic><topic>intravoxel phase dispersion</topic><topic>magnetic resonance elastography</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>stiffness-weighted imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaser, Kevin J.</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Kannan Mariappan, Yogesh</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaser, Kevin J.</au><au>Felmlee, Joel P.</au><au>Manduca, Armando</au><au>Kannan Mariappan, Yogesh</au><au>Ehman, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stiffness-weighted magnetic resonance imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>An imaging method is introduced in which the signal in MR images is affected by the stiffness distribution in the object being imaged. Intravoxel phase dispersion (IVPD) that occurs during MR elastography (MRE) acquisitions decreases the signal in soft regions more than in stiff regions due to changes in shear wave amplitude and wavelength. The IVPD effect is enhanced by lowpass filtering the MR k‐space data with a circular Gaussian lowpass filter. A processing method is introduced to take the time series of MRE magnitude images with IVPD and produce a final stiffness‐weighted image (SWI) by calculating the minimum signal at each pixel from a small number of temporal samples. The SWI technique is demonstrated in phantom studies as well as in the case of a preserved postmortem breast tissue specimen with a stiff lesion created by focused ultrasound ablation to mimic a breast cancer. When free of significant sources of depth‐dependent wave attenuation, interference, and boundary effects, SWI is a simple, fast, qualitative technique that does not require the use of phase unwrapping or inversion algorithms for localizing stiff regions in an object. Magn Reson Med, 2006. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16342158</pmid><doi>10.1002/mrm.20748</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2006-01, Vol.55 (1), p.59-67
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_67598890
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Breast Neoplasms - pathology
Elasticity
Image Processing, Computer-Assisted
intravoxel phase dispersion
magnetic resonance elastography
Magnetic Resonance Imaging - methods
Phantoms, Imaging
stiffness-weighted imaging
title Stiffness-weighted magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stiffness-weighted%20magnetic%20resonance%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Glaser,%20Kevin%20J.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20748&rft_dat=%3Cproquest_cross%3E67598890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20859512&rft_id=info:pmid/16342158&rfr_iscdi=true