Citrate anticoagulation abolishes degranulation of polymorphonuclear cells and platelets and reduces oxidative stress during haemodialysis

Background. During haemodialysis (HD), polymorphonuclear cells (PMNs) and platelets are activated and release various granule products, including myeloperoxidase (MPO) and platelet factor 4 (PF4). MPO triggers the generation of reactive oxygen species, leading to irreversible protein, carbohydrate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology, dialysis, transplantation dialysis, transplantation, 2006-01, Vol.21 (1), p.153-159
Hauptverfasser: Gritters, Mareille, Grooteman, Muriël P. C., Schoorl, Margreet, Schoorl, Marianne, Bartels, Piet C. M., Scheffer, Peter G., Teerlink, Tom, Schalkwijk, Casper G., Spreeuwenberg, Marieke, Nubé, Menso J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. During haemodialysis (HD), polymorphonuclear cells (PMNs) and platelets are activated and release various granule products, including myeloperoxidase (MPO) and platelet factor 4 (PF4). MPO triggers the generation of reactive oxygen species, leading to irreversible protein, carbohydrate and lipid modification. PF4 probably also contributes to oxidative stress. As previously shown, HD-induced PMN degranulation is almost completely abolished during citrate anticoagulation, most probably due to its calcium chelation ability. Methods. In the present study, apart from HD-induced PMN and platelet degranulation, oxidative stress was analysed during three modes of anticoagulation. Heparin, dalteparin and citrate (HDhep, HDdal and HDcit) were compared in a randomized, crossover fashion in eight chronic HD patients. Multiple blood samples were taken during the third HD session of each modality, from both the afferent and efferent line. Besides the degranulation markers MPO and PF4, various markers of oxidative stress were measured, including oxidized low-density lipoprotein (ox-LDL), malondialdehyde (MDA) and carboxymethyllysine (CML). Results. During HDhep and HDdal, marked degranulation was observed shortly after the start of HD. In contrast, during HDcit, PF4 and MPO levels remained unaltered, suggesting no release at all. After 1 week of HDcit, ox-LDL levels were markedly reduced [median 26% (3–65%), P = 0.01], if compared with HDhep and HDdal. As regards MDA and CML, no differences were found. Conclusions. This study shows first, that HD-induced PMN and platelet degranulation are early, most probably calcium-dependent processes and, secondly, that the formation of ox-LDL is clearly dependent on the type of anticoagulant applied.
ISSN:0931-0509
1460-2385
DOI:10.1093/ndt/gfi069