(13)C/(12)C isotope labelling to study leaf carbon respiration and allocation in twigs of field-grown beech trees

In situ (13)C/(12)C isotopic labelling was conducted in field-grown beech (Fagus sylvatica) twigs to study carbon respiration and allocation. This was achieved with a portable gas-exchange open system coupled to an external chamber. This method allowed us to subject leafy twigs to CO(2) with a const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2006, Vol.20 (2), p.219-226
Hauptverfasser: Nogués, Salvador, Damesin, Claire, Tcherkez, Guillaume, Maunoury, Florence, Cornic, Gabriel, Ghashghaie, Jaleh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ (13)C/(12)C isotopic labelling was conducted in field-grown beech (Fagus sylvatica) twigs to study carbon respiration and allocation. This was achieved with a portable gas-exchange open system coupled to an external chamber. This method allowed us to subject leafy twigs to CO(2) with a constant carbon isotope composition (delta(13)C of -51.2 per thousand) in an open system in the field. The labelling was done during the whole light period at two different dates (in June 2002 and October 2003). The delta(13)C values of respiratory metabolites and CO(2) that is subsequently respired during the night were measured. It was found that night-respired CO(2) is not completely labelled (only ca. 58% and 27% of new carbon is found in respired CO(2) immediately after the labelling in June 2002 and October 2003, respectively) and the labelling level progressively disappeared during the next day. It is concluded that the carbon respired by beech leaves after illumination was supplied by a mixture of carbon sources in which current carbohydrates were not the only contributors. In addition, as has been found in herbaceous plants, isotopic data before labelling showed that carbon isotope discrimination favoring the (13)C isotope occurred during the night respiration of beech leaves.
ISSN:0951-4198
DOI:10.1002/rcm.2297