Lipopolysaccharide Preconditioning Reduces Neuroinflammation Against Hypoxic Ischemia and Provides Long-Term Outcome of Neuroprotection in Neonatal Rat

Hypoxic ischemia (HI) in newborns causes long-term neurologic abnormalities. Systemic lipopolysaccharide (LPS) is neuroprotective in neonatal rats when injected 24 h before HI. However, the effect on HI-induced neuroinflammation and the long-term outcome of LPS preconditioning in neonatal rats have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 2009-09, Vol.66 (3), p.254-259
Hauptverfasser: Lin, Hsiang-Yin, Huang, Chao-Ching, Chang, Kang-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxic ischemia (HI) in newborns causes long-term neurologic abnormalities. Systemic lipopolysaccharide (LPS) is neuroprotective in neonatal rats when injected 24 h before HI. However, the effect on HI-induced neuroinflammation and the long-term outcome of LPS preconditioning in neonatal rats have not been examined. In a rat-pup HI model, compared with normal saline (NS), 0.3 mg/kg of LPS injected 24 h before HI greatly increased microglial cell and macrophage activation and up-regulated TNF-alpha and inducible NOS expression 12-h postinjection and resulted in high mortality during HI. In contrast, 0.05 mg/kg of LPS elicited very little microglia and macrophage activation and TNF-alpha and inducible NOS expression and resulted in low mortality. Given 24 h before HI, low-dose (0.05 mg/kg) LPS greatly reduced microglia and macrophage activation, TNF-alpha expression, and reactive oxygen species production 24-h post-HI compared with NS-treated rats. Rats in the low-dose LPS group also showed significantly better learning and memory and less brain damage in adulthood. Learning and memory performance among the LPS-HI, LPS, and NS groups was not significantly different. We conclude that low-dose LPS preconditioning in neonatal rats greatly reduces HI-induced neuroinflammation and provides long-term neuroprotection against behavioral and pathologic abnormalities.
ISSN:0031-3998
1530-0447
DOI:10.1203/PDR.0b013e3181b0d336