Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells

The behavior of endothelial cells (HUVECs) in contact with thin collagen films presenting different supramolecular organizations was investigated. Collagen was adsorbed on polystyrene (PS) and plasma‐oxidized PS (PSox) in conditions ensuring the formation of continuous layers presenting an increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2006-02, Vol.76A (2), p.223-233
Hauptverfasser: Keresztes, Z., Rouxhet, P. G., Remacle, C., Dupont-Gillain, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The behavior of endothelial cells (HUVECs) in contact with thin collagen films presenting different supramolecular organizations was investigated. Collagen was adsorbed on polystyrene (PS) and plasma‐oxidized PS (PSox) in conditions ensuring the formation of continuous layers presenting an increasing density of fibrillar structures. Discontinuous collagen layers were also prepared on PS by adsorption followed by dewetting. The morphology of the obtained collagen films was checked by using atomic force microscopy. HUVECs adhesion was evaluated in terms of cell number, cell area, cell shape, and actin structure after 4 h of contact with the prepared collagen layers. In the presence of serum, no adhesion was observed on PS, whereas a substantial adhesion was found on PSox. This is explained by the competition for adsorption, which turns in favor of adhesive proteins secreted by the cells on the hydrophilic PSox, but turns in favor of serum albumin on the hydrophobic PS. The progressive coating of PS by smooth collagen films increased cell adhesion and spreading. However, cell spreading and cytoskeleton organization were adversely affected by the appearance of a high density of collagen fibrillar structures. This latter trend was similarly observed on PSox. On the other hand, HUVECs spreading and cytoskeleton organization were clearly enhanced on discontinuous collagen layers compared with continuous ones. A possible explanation for these observations lies in the modification of exposure and/or spatial distribution of recognition sequences due to spontaneous collagen self‐assembly on fibril formation or to collagen aggregation on dewetting. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.30472