The BMP type II receptor is located in lipid rafts, including caveolae, of pulmonary endothelium in vivo and in vitro
Polymorphic mutations in the Bone Morphogenetic Protein type II receptor (BMPrII) gene have been implicated in the development of familial primary pulmonary hypertension (PPH) however, the role BMPrII mutations play in the development of PH has not yet been elucidated. Endothelial caveolae are an im...
Gespeichert in:
Veröffentlicht in: | Vascular pharmacology 2006, Vol.44 (1), p.50-59 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymorphic mutations in the Bone Morphogenetic Protein type II receptor (BMPrII) gene have been implicated in the development of familial primary pulmonary hypertension (PPH) however, the role BMPrII mutations play in the development of PH has not yet been elucidated. Endothelial caveolae are an important domain of hemodynamics containing eNOS, the serotonin transporter, and endothelin receptors. In this study we show by standard immunohistochemistry (IHC) that BMPrII is widely distributed in the vasculature of the rat lung, and more specifically distributed to both apical and basal membranes of the arteriolar endothelium by fluorescent IHC. We also examined compartmentalization of BMPrII in lipid fractions of plasma membranes isolated by silica based extraction from human pulmonary artery endothelial cells and rat lung endothelium. Density gradient centrifugation demonstrated BMPrII in separate caveolin-1 (cav-1) and non-cav-1 lipid rich fractions. Electron microscopy co-localized cav-1 and BMPrII in flask shaped membrane fragments. Three-dimensional fluorescence microscopy demonstrated BMPrII in discrete membrane foci, a portion of which were co-localized with cav-1, as well as in Golgi. Our findings indicate that BMPrII is located within lipid-dense fractions of pulmonary endothelial cell membranes with a portion present in caveolae suggesting potential dynamic regulatory structural relationships. |
---|---|
ISSN: | 1537-1891 1879-3649 |
DOI: | 10.1016/j.vph.2005.09.007 |